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 In this paper, the graded index (GI) multimode rare-earth metal (RE-M) 

doped polymer optical waveguide amplifier has been prepared and tested 

optically. A 10-cm Europium Aluminum Benzyl Methacrylate  

(              was fabricated via a unique technique known as the 

“Mosquito Method” which utilizes a micro-dispenser machine. Optical gain 

from 75 to 150 µm circular core diameter waveguide of 13 wt.% 

concentration has been demonstrated and measured under forward pumping 

condition. The cladding monomer deployed in this research is Acrylate resin 

XCL01, which is a modified photocurable acrylate material. Fundamentally, 

-30 decibel (dBm) red light signal input and 23 dBm pump power of 532 nm 

green laser wavelength is implemented within the range of 580 to 640 nm 

optical amplification wavelength. A maximum gain of 12.96 dB at 617 nm 

wavelength has been obtained for a 100 µm core diameter of Eu-Al polymer 

optical waveguide. The effect of different coupler diameter for pumping and 

the comparison of insertion loss before and after amplification against the 

performance of the Eu-Al polymer waveguide amplifier are also studied. 

There exists an optimum core diameter of which the amplifier gain 

enhancement is at maximum value. 
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1. INTRODUCTION 

Over the past few years, utilization of lanthanide groups such as Terbium (    ), Erbium (    ), 

Neodymium (    ) and Europium (    ) in lasers and amplifiers has grown substantially [1-3]. This is 

generally due to the effective pumping system of lanthanide ions’ energy transfer process. Furthermore, 

lanthanide ions dissolve easily in organic hosts such as polymer by encapsulating it with organic ligand [4]. 

With that, higher doping concentration can be obtained. On top of that, research activities related to polymer 

optical fiber (POF) with low-loss visible wavelength window for short distance communications have 

increased recently [5, 6]. This is due to its advantages of having low production costs and processing 

flexibility for polymer over inorganic materials such as glass and crystal [7, 8]. Polymer generally exhibits 

low absorption losses in the visible wavelength region [9, 10]. 

Therefore, for the development of organic-dye-doped polymeric devices such as rare earth (RE) 

doped polymer amplifier as integrated optical waveguide devices, scaling down the size to be compact is 

necessary. However, this may result in interaction between ions due to high doping concentration in the 

active layer [11]. The transition lifetime at the metastable state will increase as well, owing to insufficient 

energy of the ligand surrounding the RE ion [12]. Hence, the Europium-Aluminium (Eu-Al) polymer optical 
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waveguide amplifier, which is a product of rare earth metal (RE-M) doping composition, is introduced by 

KRI Inc. 

In this research, the Europium Aluminium Benzyl Methacrylate (            ) is used as the 

core monomer. However, this core monomer is yet to be commercialized. The synthesis of              

is relatively similar to that of a previous research conducted by KRI Inc., concerning Europium Aluminium 

Methyl Methacrylate             [12, 13]. However, the core monomer must undergo some chemical 

modification by replacing the Methyl Methacrylate (MA) with Benzyl Methacrylate (BzMA) after the 

evaporation process of the Propylene Glycol α-Monomethyl Ether (PGME). This modification is important in 

order to enhance the core properties with respect to this research [14]. 

In the next few years, more advanced technology will be developed correlating to the demand of 

higher data rate. Thus, it is imperative to implement the graded index (GI) multimode fiber since the fiber is a 

promising candidate for high bitrate transmissions in which it has the advantage of low propagation loss, low 

connection loss with GI multimode fiber (MMF) with wide misalignment tolerance, and low interchannel 

crosstalk even under a small pitch size [15]. Correspondingly, the “Mosquito Method” is adopted to create 

the GI circular core [16-19] of the Eu-Al polymer optical waveguide. The circular core is important as this 

research attempts to combine optical fiber characteristics to a planar waveguide. The optical amplification for 

GI multimode Eu-Al polymer optical waveguide amplifier has been reported to have satisfactory results as 

high as 7.1 dB/cm for 10 wt.% concentration via variable stripe length (VSL) method [14] and 3.24 dB/cm 

for 13 wt.% through forward pumping method [20]. Although higher optical amplification was obtained from 

the VSL method, the side surface excitation method seemed complicated to implement and was impractical 

for current application [20, 21]. Furthermore, both methods acquired core diameters of 100 μm for 5.2 and 

4.9 cm. Thus, the study proceeds with Eu-Al polymer optical waveguide amplifier at 13 wt.% concentration 

of the core monomer. Accordingly, the research would focus on the relationship of optical gain and core 

diameter. The core diameter of the waveguide is precisely controlled to 75, 100, 125 and 150 μm with a 

deviation of only a few micrometers and tested experimentally. The length of the waveguide is fixed by 

doubling the length of the waveguide in the previous research, i.e., approximately 10 cm. 

 

 

2. FABRICATION METHOD 

The Eu-Al polymer optical waveguide amplifier was fabricated by using a unique method known as 

the Mosquito Method. It was performed by utilizing a micro-dispenser provided by Musashi Engineering Inc. 

Basically, a viscous liquid-state core monomer from a syringe connected to a dispenser was dispensed via a 

thin needle directly into a cladding monomer layer. The Acrylate resin, XCL01 and Europium Aluminum 

Benzyl Methacrylate (            ) were used as cladding and core, with refractive index of 1.501 and 

1.51, respectively. The fabrication technique is illustrated in Figure 1. 
 
 

 
 

Figure 1. Fabrication steps of the mosquito method 
 

 

Firstly, the XCL01 monomer was coated on the glass substrate. The waveguide material, which is 

the frame of cladding monomer was made from the silicone resins supplied by ADEKA Corp. to ensure a 

thick layer coating of cladding monomer. After that,              was inserted into the syringe connected 

to the micro-dispenser. Then,              was dispensed directly into the cladding layer through a thin 

needle tip attached to the syringe. Here, the dispensing scanning speed, pressure, and the needle inner 

diameter were scanned throughout the process. These parameters are the key factors that control the core 

diameter and inter-channel pitch [19, 22-25]. In the meantime, the              was discharged directly 

onto a liquid state of XCL01. It is very important for the cladding in its liquid state to maintain the core’s 

original cross-sectional shape immediately after being dispensed from the needle. Before exposure to ultra 

violet (UV) light, the core and cladding monomer should be diffused together since both monomers are 

miscible to form a concentration distribution. The copolymer was successfully formed after curing under UV 
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light and postbaked such that the concentration distribution remained fixed. The waveguide was cut 

depending on the desired length and then it was ready for testing. 

 

 

3. RESULTS AND ANALYSIS 

In this section, the performance of rare earth metal (RE-M) using Europium Aluminum (Eu-Al) as 

gain medium is demonstrated with different core diameters. This section delineates the optimum parameters 

for dispensing conditions, experiment procedures and results, and data analyses. The performance of Eu-Al 

polymer optical waveguide is evaluated based on insertion loss and optical gain for a variation of core 

diameters with fixed length throughout the different coupler diameters used. The physical change on the 

surface of core waveguide are also discussed. 

 

3.1. Optimum dispensing conditions 

The dispensing scanning speed, inner needle diameter and dispensing pressure are key parameters in 

executing the Mosquito Method [16, 19, 22]. Hence, these three dispensing criteria are investigated to create 

the desired core diameter. In this research, the idea of the proposed optical waveguide amplifier is based on 

the combination of planar waveguide and graded index (GI) optical fiber core, upon realizing the superiority 

of the GI multimode fiber in high-speed transmissions. 

For this purpose, three circular inner needle diameters (150, 170 and 190 µm) and dispensing gas 

pressure (210 and 420 kPa) were varied. The dependency of the core diameter on these three parameters are 

shown in Figure 2(a) and 2(b). The plots show the average of five core diameters created on the waveguide. 

From the results, the smaller cores were found to require faster dispensing scanning speed under smaller 

inner needle diameter of 150 µm and low pressure of 210 kPa. In this paper, four waveguides with different 

core diameters of 75, 100, 125, and 150 µm were fabricated based on the appropriate dispensing conditions 

found for XCL01 and             . Table 1 presents the fabrication results of desired core diameters 

according to manipulated and fixed parameters as set for each core diameter. 
 

 

  
  

(a) (b) 
  

Figure 2. Core diameter versus dispensing scanning speed for variation of, (a) Dispensing pressure with 

150 µm inner needle diameter, and (b) Inner needle diameter with 210 kPa dispensing pressure 
 
 

Table 1. Parameters of micro dispenser machine 
Core diameter [µm] The needle inner diameter [µm] The dispenser gas pressure [kPa] The needle scanning speed [mm/s] 

75 190 284 61.8 
100 190 505 61.8 

125 190 603 47.3 

150 190 505 27.5 

 

 

3.2. Near field pattern and insertion loss 

Varying the waveguide core diameter is a very important aspect of this investigation in order to 

ascertain the optimum core diameter for best gain enhancement. Thus, each core from four waveguides was 

fabricated and tested multiple times at a wavelength of 617 nm, which is one of the wavelengths under 

visible region. In this measurement, the near field pattern (NFP) is necessary for the optical beam pattern 

analysis. The NFP is used to analyze the light confinement from the transceiver side (Tx) to the Receiver side 

(Rx). In other words, by using the NFP, the position of the launching and receiving sides can be adjusted 
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properly to prevent any loss during measurement. In this research, the input of the red-light signal was from a 

light emitting diode (LED) via single mode fiber (SMF) at the Tx side. Then, the light emitted through the 

waveguide was captured using a charge coupled device (CCD) camera at the Rx side as shown in Figure 3. 
 
 

 
 

Figure 3. Near Field Pattern (NFP) measurement system 

 

 

Next, two readings were taken into consideration for the insertion loss. The first reading was made 

from the configuration with the waveguide and measured as in Figure 4(a) and followed by the second 

reading of that the configuration without the waveguide, also known as “back to back” as in Figure 4(b). The 

output of the light was measured via a Power Meter along the fiber to determine the insertion loss. The core 

cross-section, NFP and insertion loss for the best core amplification are tabulated in Table 2. 
 
 

  
  

(a) (b) 
  

Figure 4. Insertion loss measurement, (a) Reading with waveguide, and (b) Back to back reading 
 

 

Comparing the NFP measurement results in Table 2, a distinct colour distribution of the beam (light 

intensity distribution) is noticed. For example, the highest light distribution in 75 µm core diameter 

waveguide is red, meanwhile, 100 and 150 µm core diameter waveguides are blue. It is indicated that the  

red-light distribution in 75 µm is more strongly confined to the core centre, whereas in other cores, it is 

considered that the lights spread out during propagation. This is believed to occur due to the difference of the 

refractive index distribution formed within the core. From these results, it is confirmed that light propagates 

through the core in any of the waveguides, although the manner in which the light is confined in the core 

centre is different between the waveguides. 
 

 

Table 2. NFP and insertion loss results of different core diameters 
Core Diameter [μm] 75 100 125 150 

Core Cross-Section 

    

NFP 

 

   

Back to Back [dBm] -48.75 -46.07 -52.01 -48.64 

Reading with 

Waveguide [dBm] 
-40.57 -40.81 -40.75 -40.98 

Insertion Loss [dBm] 8.18 5.26 11.26 5.87 

 

 

The results for insertion loss measurements showed the highest insertion loss at 125 µm, which is 

11.26 dBm. In contrast, the 75 µm waveguide core diameter recorded the second lowest insertion loss, which 

 
 

 
Tx Rx 
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is 8.18 dBm. Hence, it can be concluded that the reason for the instability of the insertion loss with respect to 

the waveguide core diameter is due to the polished state of the end face of the waveguide  

or measurement error. 

 

3.3. Gain enhancement for different coupler 
The experiment setup for optical amplification is shown in Figure 5. The green laser of 23 dBm 

emitting at 532 nm wavelength was used as the pump source and -30 dB red light signal emitting at 617 nm 

wavelength was used as the signal source. Both signal and light pump were combined using a 105 µm core 

graded index-multimode fiber (GI-MMF) (50:50) coupler. The amplified output signal was collected by an 

optical spectrum analyzer (OSA) passing through two meters of 200 µm core diameter of step  

index-multimode fiber (SI-MMF).  
 
 

 
 

Figure 5. Optical gain amplification measurement setup 
 
 

The repetitions of the gain measurement are necessary to investigate the repeatability and the 

resistance to high optical power excitation. The outputs from OSA were analyzed using Microsoft Excel. For 

this purpose, the measurement of the signal, pumping signal and the coupled signal of input and light pump 

were made separately. Consequently, the gain without any noise such as Amplified Spontaneous Emission 

could be obtained by using mathematical subtraction. Under this condition, the optical gain measurement was 

repeated by substituting the 105 µm core with a 50 µm core GI-MMF coupler. 

Figure 6. shows the optical gain for different core diameters of the Eu-Al polymer optical 

waveguide amplifier using two different coupler diameters, which are 105 and 50 µm. From the graph, the 

optical gain is observed to have increased from 75 to 100 µm waveguide core diameter for both couplers. For 

the 50 µm coupler, the gain shows a slight decrease at 125 and 150 µm waveguide core diameter, which are 

11.93 and 8.93 dB respectively.  
 

 

 
 

Figure 6. Comparison of Optical Gain for 105 and 50 µm GI-MMF Coupler 
 

 

However, the gain drastically decreases from 12.96 to 3.46 dB for the 105 µm coupler at 100 to 125 

µm waveguide core diameter. The decrease in gain value is believed to be due to measurement error. 

Surprisingly, the optical gain of 105 µm coupler for 150 µm waveguide core diameter increases sharply from 

125 µm which is 7.88 dB. Overall, the trend of the optical amplification gain by using the 50 µm coupler is 

higher compared to that of the 105 µm. This could be related to the higher energy density of the launching 

side provided by the 50 µm coupler as compared to the 105 µm coupler; i.e.,           and  

              respectively, as proven from (1): 
 

                
                  

                           
     (1) 
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Although the gain attained by the 105 µm coupler at 100 µm is 12.96 dB, which is higher compared 

to the 50 µm coupler, the difference is not substantial, of which amounts to only 0.33 dB gap at the 

wavelength of 617 nm. 

 

3.4. Comparison of insertion loss before and after amplification 

Table 3 compares the surface core cross-section before and after amplification. Clearly, the 

appearance from post-amplification generally shows a darker shade compared to pre-amplification. This 

could be attributed to higher heat emitted by the laser pump applied to the waveguide during amplification as 

supported by the measurement of insertion loss after the amplification in Figure 7. 

As illustrated in the graph, the 125 µm core recorded the highest increasing insertion loss after 

amplification, which is approximately 2.91 dBm followed by the 100 µm core of 1.73 dBm. Based on the 

graph, the insertion loss after the amplification increases for all core diameters except for the 75 µm core 

diameter. The decrease in insertion loss value after the amplification is shown as 0.02 dBm. Even with 

decreasing values in insertion loss, the gap remains very close. As a result, it is thought that the value could 

be due to measurement error. 
 

 

Table 3. Comparison of core cross section before and after amplification 
Core Diameter [μm] 75 100 125 150 

     

Pre 

Amplification 

    

Post 

Amplification 

    
 

 

 
 

Figure 7. Insertion loss comparison before and after amplification 

 

 

4. CONCLUSION 

The Mosquito Method has been adopted in this study to prepare four different 10-cm  

             polymer optical waveguides amplifiers with graded index multimode core diameters of 75, 

100, 125, and 150 µm. It is confirmed that the fabrication of the desired core diameter using this method was 

dependent on the controllability of needle inner diameter, dispensing scanning speed and pressure. Optical 

amplification had been observed at 617 nm with a green laser at 532 nm. Based on observation, the surface of 

the waveguide core turned darker-an effect from the heat emitted by the laser during amplification-which has 

caused the increase in insertion loss. Meanwhile, the highest gain recorded is 12.96 and 12.63 dB for 100 µm 

waveguide core diameter using 105 and 50 µm coupler respectively by forward pumping. The results show a 

potential for signal gain when incorporating             , a rare earth metal (RE-M) doped polymer, as 

an active optical device. Considerably, it is expected that this compact device could be integrated into many 

applications such as in-vehicle optical interconnect, medicine, and communication network in the near future. 
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